Is the stochastic parabolicity condition dependent on $p$ and $q$?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Is the stochastic parabolicity condition dependent on p and q ? ∗

In this paper we study well-posedness of a second order SPDE with multiplicative noise on the torus T = [0, 2π]. The equation is considered in L((0, T )×Ω;L(T)) for p, q ∈ (1,∞). It is well-known that if the noise is of gradient type, one needs a stochastic parabolicity condition on the coefficients for well-posedness with p = q = 2. In this paper we investigate whether the well-posedness depen...

متن کامل

A NOTE ON THE p-PARABOLICITY OF SUBMANIFOLDS

We give a geometric criterion which shows p-parabolicity of a class of submanifolds in a Riemannian manifold, with controlled second fundamental form, for p ≥ 2.

متن کامل

On Condition (E?P)

In this paper we introduce condition (E?P) a generalization of Conditions (E?), (E) and (P) of acts over monoids and will give a classification of monoids by comparing this condition of their (Rees factor) acts with other properties. We give also a criterion of cyclic acts to satisfy Condition (E?P).

متن کامل

The First and Second Zagreb Indices, First and Second Zagreb Polynomials of HAC5C6C7[p,q] and HAC5C7[p,q] Nanotubes

Topological indices are numerical parameters of a molecular graph G which characterize its topology. On the other hands, computing the connectivity indices of molecular graphs is an important branch in chemical graph theory. Therefore, we compute First Zagreb index Zg   <span style="font-family: TimesNewRomanPS-Italic...

متن کامل

Lids - P - 2172 Asynchronous Stochastic Approximation and Q - Learning 1

We provide some general results on the convergence of a class of stochastic approximation algorithms and their parallel and asynchronous variants. We then use these results to study the Q-learning algorithm, a reinforcement learning method for solving Markov decision problems, and establish its convergence under conditions more general than previously available.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2012

ISSN: 1083-6489

DOI: 10.1214/ejp.v17-2186